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Introduction

Contribution of word embedding to 
database systems

▪Use of external data sources of 
unstructured data (text in natural 
language)

▪New operations for unstructured text 
values in the database
- Analysing values
- Extract new information from such values

SELECT m.title , t.word , t.squaredistance

FROMmovies AS m, most_similar ( m.title , 

(SELECT title FROM movies)) AS t

Word 
embedding
operations

άέὺὭὩί άέὺὭὩί

Execution of most_similar operation

Results:
Inception | Shutter Island
…
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Word-Embeddings

Word Embeddings
▪ Mapping: Tokens Ÿ Vectors
▪ Vectors modell semantic as well as syntactic

relations between tokens.
ĄUseful for NLP techniques (Sentiment Analysis, 

Maschine Translation, Information Retrieval,
Word Clouds)

Properties
▪ Pretrained Word Embedding Datasets contain

usually a few million vectors
▪ Dimensionality of the vectors: 200-300

Word Relations
Source: Mikolov, Tomas, Quoc V. Le, and Ilya Sutskever. 
"Exploiting similarities among languages for machine translation.“
arXiv preprint arXiv:1309.4168 (2013).
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Word-Embeddings: Operationen

Quantify Similarity
▪Cosine similarity between vectors:

▪Example: Top5(‘birch’) Ÿ ‘pine’, ‘birch trees’,  ‘birches’, 
‘tamarack’, ‘cedar’

Analogies
▪Analogy Queries: ὥ ὦ ὧ ȩ

e.g. man – woman ≈ king - ? Ÿ queen
▪Pair-Direction: ÁÒÇÍÁØ

͵╪ȟ╫ȟ╬
ίὭά╪ ╫ȟ╬ ▀

▪3CosAdd: ÁÒÇÍÁØ
╪ȟ╫ȟ╬

ίὭά▀ȟ╬ ίὭά▀ȟ╪ ίὭά▀ȟ╫

ÁÒÇÍÁØ
╪ȟ╫ȟ╬
ίὭά▀ȟ╬ ╪ ╫

Relation Plot: man – woman
Source: https://nlp.stanford.edu/projects/glove/
Last access: 08.03.2018

ίὭά●ȟ◐
●ɇ◐

● ɇȿ◐ȿ

https://nlp.stanford.edu/projects/glove/
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System architecture

Basis
▪Postgres database system
Ÿ Open source, Extensibility

Word Embedding Operations
▪implemented as User-Defined-Functions (UDFs)
Ÿ Query optimization still active
Ÿ Can be used in SQL queries 
Ÿ Search methods implemented in C
Ÿ Interfaces implemented in PL/pgSQL

Index structures
▪Stored in database relations
▪Currently used index structure can be selected with UDFs 

while runtime

Fast woRd EmbedDings in Datatbase sYstem

Word vectors and
index data

Initialization 
scripts

Structured data

Query execution

Word 
embedding 
datasets

Database extension

Execute 
UDFs

PL/pgSQL
Funktionen

Native functions

SQL-
Query

Query index 
structures (with SPI)

use
(with SPI)
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WE operations for database system

Use cases
▪Similarity Queries

SELECT keyword

FROMkeywords

ORDER BY cosine_similarity ('comedy', keyword)

Ÿ comedy, sitcom, dramedy, comic, satire, …
▪kNN Queries*

SELECT m.title , t.term , t.score

FROMmovies AS kNN( m.title , 3) AS t

ORDER BY m.title ASC, t.score DESC

Ÿ Godfather | {Scarface, Goodfellas, Untouchables}
▪Analogy Queries

SELECT analogy_3cosadd(

ôGodfatherô,ôFrancis_Ford_Coppola ô, m.title )

FROMmovies AS m

IncpeptionŸ Christopher Nolan

ÁkNN_In Queries*
SELECT DISTINCT title FROM movies

WHERE keyword = ANY(

SELECT term 

FROM kNN_in ('historical fiction', 10,

ARRAY( SELECT keyword FROM movies))

Ÿ Movies for keywords: historical, fiction, 
literary, fictionalized, novels
ÁGrouping*

SELECT term, groupterm

FROM grouping( SELECT title FROM movies ), 

'{Europe, America}ô) 

Ÿ Melancholia | Europe
Ÿ Godfather | America

ÁHelper functions , e.g. to calculate 
centroids,  …

* Function calls simplified
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Product Quantization

Idea
Reduce the computation time of the Euclidean square 
distance through an approximation by a sum of 
precomputed distances
Ÿ compact representation of vectors in index structure
Ÿ low computation time for distances

Preprocessing
Split vectors in ά subvectors
Ÿ apply k-means  on subvectors to obtain k centroids for 
every interval Ÿ quantizer ήȟȣȟή

Product-Quantization
1. Split vector in subvectors
2. Apply quantizers

Ÿ Represent Product-Quantization as sequence
3. approximate squared distances by sums of 

precomputed squared distances Äό ●ȟή ό ◐

ό ◐ȟȣȟό ◐

Quantizer: assigns sub vector 
to on of the centroid of ὅ

Approximated 
distance :

ήḊᴙ ᴼ ╬ȟȣȟ╬

Product quantization:

Query vector

Splitting into άsubvectors 
of ◐withὨdimensions

Vector from index

Ÿ Representation 
as sequence



9

Product Quantization - Search

Index creation
▪Use k-means to calculate centroids for 

quantizer ήȟȣȟή and store them in 
a relation called “codebook”

▪Calculate sequences for every vector and store them 
in a quantization table together with the 
corresponding token

Search
▪Split query ὼvector into subvectors
▪Precompute square distances Äό ●ȟή ό ◐

by using the codebook relation and the subvectors of ὼ
▪Determine the approximated kNN using the 

summation method to calculate distances for all 
sequences in the lookup table.

Product quantization search
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IVFADC

Idea : 
Accelerate computation by providing a non-exhaustive 
index with an inverted lookup
Preprocessing : 
▪A coarse quantizer ήwhich quantize the whole 

vectors (considering all dimensions) is applied
▪The residual vector ὶ◐ ◐ ή ◐ is calculated for 

every vector
▪Product quantization is applied on the residual
▪A coarse lookup table is created which refers to lists 

of sequences of product quantizations for residual 
vectors of vectors with the same coarse 
quantization

Calculation: Approximated distances can be calculated 
by :

IVFADC search
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Comparison: PQ-, IVFADC- and exact 
Search

Intermediate fast: ≈  9 times 
faster
Exhaustive: Considers all vectors

Appropriated for :
•kNN-In queries
•3CosAdd analogy queries on a 

specific output set
•Grouping queries
Inappropriate for :
•Computation of single 

similarity values
•Pair direction queries

IVFADC Search PQ Search Exact computation

Very fast ≈ 300 times faster

Non -Exhaustive : Considers only 
a subset of the vectors in the 
index

Appropriated for :
•kNN queries
•3CosAdd analogy queries
ÍÁØÃÏÓὺ ὺ ὺ ȟȩ

Inappropriate for :
•Computation of single 

similarity values
•Search queries with specific 

output set

slow (but no preprocessing)

Separate calculation of all 
similarity values (exact)

Appropriated for :
•Single similarity calculations
•Pair direction queries
•Search queries on a specific 

output set

Inappropriate for :
•Search queries on huge 

datasets
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Post verification

Method
▪Re-ranking of aNN results by exact kNN search
▪Improve quality of results by retrieving more results 

f > k of nearest neighbors in the first run
Ÿ Select best results with exact kNN Search

▪Precision could be improved a lot
Ÿ Especially useful for analogy queries

SELECT ANN.word

FROMk_nearest_neighbour_ivfadc (ôGodfatherô, 500)AS ANN

ORDER BY cosine_similarity (ôGodfatherô, ANN.word ) DESC

FETCH FIRST 3 ROWS ONLY

Post verification process

aNN Search ○ȟὪ)
○: Anfragevektor

Ὢ: Postverifikation-
parameter

Ὧ: Anzahl 
gewünschter 
Ergebnisse

kNN Search(○ȟὯ, ANN)
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Range Queries

Problem Setting
▪ Many SQL queries trigger a lot of aNN queries at one time
▪ Retrieving index data from database with independend queries needs a lot of time
▪ Retrieval of the same index data (e.g. codebook) multiple times

Range Query Approach
▪ Reduce retrieval time for aNN queries with batch-wise execution of queries
▪ UDF for range queries:

SELECT word

FROM k_nearest_neighbour_ivfadc_batch ( ARRAY( SELECT title FROM movies), 3) ;
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Range Queries

Algorithm
1. Determine coarse quantizations for query 

vectors and differentz vectors (residual 
vectors)

2. Create lookup: 
coarse quantizations -> query vector

3. Precalculate quadratic distances of 
subvectors

4. Retrieve IVFADC index entries
(CoarseID, PQ-Sequenz von Residuum)

5. Iterative Processing of index entries:
1. Retrieve residual vectors of query vectors with 

the same coarse id via lookup
2. Caluclate approximated distances between 

residual vectors
3. Update aNN for query vector

IVFADC batch search



15

Evaluation

Evaluation Setup
▪Search for 5 nearest neighbors

- Calculation of response time and precision
- Measurement for  100 Queries 
Ÿ Determine average values

▪Dataset: 
- 3 million vectors
- Dimensionality: 300

▪Index parameter:
- Length of PQ-sequences ά ρς

- Number of centroids for ήȣή Ḋρπςτ

- Number of centroids for ή Ḋρπππ

- Results for post verification Ὢ Ḋρπππ

- Size of batches Ḋρππ

Index Response 
time

Precision

Exact search 8.79s 1.0

PQ search 1.06s 0.38

IVFADC 0.03s 0.35

PQ search 
(postverif.)

1.29s 0.87

IVFADC (postverif.) 0.26s 0.65

IVFADC (batch wise) 0.01s 0.35
Time and precision measurements



Current and Further Research
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System Performance

Word2Bits
Source: Lam, M. (2018). Word2Bits - Quantized Word Vectors, 1–9. Retrieved 
from http://arxiv.org/abs/1803.05651
▪Quantization of coordinate values in the training 

algorithm
▪Allows compressed representation
▪Act as a regularizer
▪Study work: Lukas Stracke

Research Idea
▪Combine Word2Bits Approach with PQ- and 

IVFADC-search methods 
▪Finite number of possible centroids

Ÿ Allows fast exact search
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System Performance

LSH (Locality Sensitive Hashing)
▪Hash functions mapping vectors which are nearby with 

high probability to the same bit sequence
▪Index is obtained by applying multiple such locality 

sensitive hash functions on the vectors Ÿ Create lookup: 
hash value Ÿ vector

▪Hash functions can be applied to the query vector Ÿ
lookup vectors with same or similar hash values

Research Idea
▪Integration in relational database system
▪Comparison with current aNN search methods
▪Realization in bachelor theses: Carl Naumann

ὬḊᴙ ᴼ πȟρ

ὒὛὌ○ Ὤ ○ȟȣȟὬ○
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Demonstrator

FREDDY Demo
▪Web application as an interface for the WE-DBS
Ÿ Currently only a command line interface

▪Interactive Visualization of the performance and 
precision of the implemented search methods

▪Submission for the 
CIKM 2018 (Deadline: 25.5.)
(Demonstrator + Demo-Paper)

▪Realization in Bachelor Theses: 
Zdravko Yanakiev

http://141.76.47.127:3000/

http://141.76.47.127:3000/
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Context Advisor and Preprocessing

Problem Setting
▪Word vectors may refer to different entities as the 

tokens in the database 
(e.g. apple: fruit vs. Apple Inc.)

Ÿ Analyze context of the word vectors and 
database entities to make it possible to combine 
both information sources

Challenges
(1) Extract structured Information of text values in 

the DBS
- Database does not contain explicit knowledge about 

the semantic of textual values
Ÿ Obtain semantic knowledge by observing the 
relations

- Column describes a context for the text values in it
Ÿ Could be used to cope with polysemy of words

- Different text values can refer to the same instance (e.g. 
aliases, nicknames, etc.)

Alignment and 
Correlation Analysis

Relations of 
text values

Word embedding 
dataset
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Context Advisor and Preprocessing

Challenges
(2) Determine if entities are represented in the word 

embedding dataset 
- Observe how far structured knowledge is encoded in the word 

vectors
- Do relations encoded in the word vectors contradict with relations 

in the database?
(3) Map Text Values to Word Vectors

- Align structured knowledge in the database with the word vectors
- Decide which word embedding fits to the text value
- System can contain multiple word embedding datasets 
Ÿ Decide which word embedding dataset fits best

(4) Result Set Interpretation for WE-DBS-Queries
- kNN is not always meaningful (too small similarity values have low 

validity or at least could hardly be interpreted)
Ÿ Quantify certainty of the truth of results

(5) Word Embedding Imputation: Integrate Missing Entities 
in Word Embedding Dataset

- Vectorization of structured knowledge and align to word vectors

Alignment and 
Correlation Analysis

Relations of 
text values

Word embedding 
dataset
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Related Work

Sense2Vec: NER tagging before training
Trask, A., Michalak, P., & Liu, J. (2015). sense2vec - A Fast and Accurate 
Method for Word Sense Disambiguation In Neural Word Embeddings, 1–
9. Retrieved from http://arxiv.org/abs/1511.06388

▪Named Entity Recognition as preprocessing
Ÿ Classes are annotated to named entities

▪Instead of vector set for words vector set for 
senses

Word2Vec

Apple has presented a new
product in Chicago …

NER Tool

Text corpora in natural language

Apple_ORG has presented a new
product in Chicago_GPE …

Text corpora where NE are tagged

Apple_ORG:     [0.343, -0.212, …]
Apple_NOUN:  [0.343, -0.212, …]
…

http://arxiv.org/abs/1511.06388
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Related Work

Context-Specific Multi-Prototype Word Embeddings
Zheng, X., Feng, J., Chen, Y., Peng, H., & Zhang, W. (n.d.). Learning Context-Specific 
Word/Character Embeddings, 3393–3399.

▪Assumption: Different word senses occur in different 
contexts

▪Idea: Convolutional Layer represents context
Ÿ Trained to predict word sense from context 
representation

▪Second Step: If context vector is dissimilar to sense vector
Ÿ Create additional sense vectors for the respective 
words
Ÿ Retrain the model with multiple sense vectors per token

Source: Zheng, X., Feng, J., Chen, Y., Peng, H., & Zhang, W. 
(n.d.). Learning Context-Specific Word/Character 
Embeddings, 3393–3399.
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Related Work

Densifer: Focus information for specific 
properties (sentiment, frequency, 
concreteness) in ultradense subspaces

Rothe, S., Ebert, S., & Schütze, H. (2016). Ultradense Word 
Embeddings by Orthogonal Transformation. Retrieved from 
http://arxiv.org/abs/1602.07572

▪Training of Orthogonal Matrix ὗᶰᴙ
for projecting Word Embedding Ὡ ᶰᴙ
in a vector space where specific 
dimensions (ultradense subspaces) 
represent specific properties of the token 
(e.g. sentiment, concreteness)

▪Subspace ό ᶰᴙ
ᶻcan be obtained by 

multiplication with an Identity Matrix ὖᶰ
ᴙ

ᶻ specific for the property:

ό ὖὗὩ

Source: Rothe, S., Ebert, S., & Schütze, H. (2016). Ultradense Word 
Embeddings by Orthogonal Transformation. Retrieved from 
http://arxiv.org/abs/1602.07572

http://arxiv.org/abs/1602.07572
http://arxiv.org/abs/1602.07572
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Related Work

Translation Matrix
Mikolov, T., View, M., Le, Q. V, View, M., Sutskever, I., & View, M. 
(n.d.). Exploiting Similarities among Languages for Machine 
Translation.

▪Training of Translation Matrixὡ for 
Transformation of Embeddings from one 
vector space to another

▪Training Data: small dictionary of token pairs 
ὼȟᾀ

▪Training with Stochastical Gradient Decent Source: Mikolov, Tomas, Quoc V. Le, and Ilya Sutskever. 
"Exploiting similarities among languages for machine translation.“
arXiv preprint arXiv:1309.4168 (2013).
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Related Work

Joint Embeddings (for Knowledge Graph Completion)
Wang, Z., Zhang, J., Feng, J., & Chen, Z. (2014). Knowledge Graph and Text Jointly Embedding. Emnlp
▪Joint Model - Embeddings for nodes in knowledge graphs and tokens in texts
▪Knowledge Graph Nodes:

- Minimze:ȿ▐ ► ◄ȿfor a fact ▐ȟ►ȟ◄ in the Graph (Edge)
▪Text Model:

- Similar to Word2Vec SkipGram Model (Trained to predict probability of co-occurrence)
▪3 Likelihood consists of three terms:

- Knowledge Model ὒ
- Text Model ὒ
- Alignment ὒ : Nodes with the same label as named entities should have similar vectors as the according 

tokens
▪Training: Maximization of ὒ ὒ ὒ
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Related Work

Uncertainty of word vector similarity
Rekabsaz, N., Lupu, M., & Hanbury, A. (2016). Uncertainty in 
Neural Network Word Embedding: Exploration of Threshold for 
Similarity. https://doi.org/10.1007/978-3-319-56608-5_31
▪Measured the distribution of Similarity values
▪Determine uncertainty ′of similarity values 

by training a model two times on the same 
text corpora with different model 
initialization

Ÿ Low similarity values are more
uncertain

Ÿ For specific tasks usability of word vectors
could be improved by thresholds for
similarity values

Source: Rekabsaz, N., Lupu, M., & Hanbury, A. (2016). Uncertainty 
in Neural Network Word Embedding: Exploration of Threshold for 
Similarity. https://doi.org/10.1007/978-3-319-56608-5_31
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Complexity of the WE-Queries

Multiple Datasets: 
▪Word embedding operations can be executed on different WE datasets
▪Word embedding datasets could be combined
▪(Not all entities in a column have an corresponding instance in the word embedding 

dataset)

Multiple Parameters: 
▪Different queries have different demands in terms of 

- Precision of Search Operations itself
- Execution Time of the Operations
- Certainty of similarity values

Index structures
▪Multiple index structures for one dataset (different types and different parameters)
▪Change over time (It is possible to add entities during runtime)
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Complexity of the WE-Queries

Deal with the Complexity
▪Huge number of User Defined Functions:

At the moment 86 additional UDFs ( , and there will be more …) 
But: Only 5 basic operations

▪At the moment two options:
1) Cope with complexity – Operations with a lot of parameters
2) Transfer configuration to separate functions – define configuration global

Problems: 
•Non-transparent: same query returns different results (with different configuration)
• Inflexible: multiple operations in one query share the same configuration 

▪Possible Solution:
- Objects storing for database entries how they could be examined by word embedding operations
- In specific contexts where an entity is used it might play different roles


