
Context Management in Word
Embedding Database Systems
Considerations for Finding a Topic

2

Introduction

Word embedding
operations

Language
learning
methods

Word embedding
dataset

Text corpora in
natural language

3

Introduction

Contribution of word embedding to
database systems

▪Use of external data sources of
unstructured data (text in natural
language)

▪New operations for unstructured text
values in the database
- Analysing values
- Extract new information from such values

SELECT m.title , t.word , t.squaredistance

FROMmovies AS m, most_similar (m.title ,

(SELECT title FROM movies)) AS t

Word
embedding
operations

άέὺὭὩί άέὺὭὩί

Execution of most_similar operation

Results:
Inception | Shutter Island
…

4

Word-Embeddings

Word Embeddings
▪ Mapping: Tokens Ÿ Vectors
▪ Vectors modell semantic as well as syntactic

relations between tokens.
ĄUseful for NLP techniques (Sentiment Analysis,

Maschine Translation, Information Retrieval,
Word Clouds)

Properties
▪ Pretrained Word Embedding Datasets contain

usually a few million vectors
▪ Dimensionality of the vectors: 200-300

Word Relations
Source: Mikolov, Tomas, Quoc V. Le, and Ilya Sutskever.
"Exploiting similarities among languages for machine translation.“
arXiv preprint arXiv:1309.4168 (2013).

5

Word-Embeddings: Operationen

Quantify Similarity
▪Cosine similarity between vectors:

▪Example: Top5(‘birch’) Ÿ ‘pine’, ‘birch trees’, ‘birches’,
‘tamarack’, ‘cedar’

Analogies
▪Analogy Queries: ὥ ὦ ὧ ȩ

e.g. man – woman ≈ king - ? Ÿ queen
▪Pair-Direction: ÁÒÇÍÁØ

͵╪ȟ╫ȟ╬
ίὭά╪ ╫ȟ╬ ▀

▪3CosAdd: ÁÒÇÍÁØ
╪ȟ╫ȟ╬

ίὭά▀ȟ╬ ίὭά▀ȟ╪ ίὭά▀ȟ╫

ÁÒÇÍÁØ
╪ȟ╫ȟ╬
ίὭά▀ȟ╬ ╪ ╫

Relation Plot: man – woman
Source: https://nlp.stanford.edu/projects/glove/
Last access: 08.03.2018

ίὭά●ȟ◐
●ɇ◐

● ɇȿ◐ȿ

https://nlp.stanford.edu/projects/glove/

6

System architecture

Basis
▪Postgres database system
Ÿ Open source, Extensibility

Word Embedding Operations
▪implemented as User-Defined-Functions (UDFs)
Ÿ Query optimization still active
Ÿ Can be used in SQL queries
Ÿ Search methods implemented in C
Ÿ Interfaces implemented in PL/pgSQL

Index structures
▪Stored in database relations
▪Currently used index structure can be selected with UDFs

while runtime

Fast woRd EmbedDings in Datatbase sYstem

Word vectors and
index data

Initialization
scripts

Structured data

Query execution

Word
embedding
datasets

Database extension

Execute
UDFs

PL/pgSQL
Funktionen

Native functions

SQL-
Query

Query index
structures (with SPI)

use
(with SPI)

7

WE operations for database system

Use cases
▪Similarity Queries

SELECT keyword

FROMkeywords

ORDER BY cosine_similarity ('comedy', keyword)

Ÿ comedy, sitcom, dramedy, comic, satire, …
▪kNN Queries*

SELECT m.title , t.term , t.score

FROMmovies AS kNN(m.title , 3) AS t

ORDER BY m.title ASC, t.score DESC

Ÿ Godfather | {Scarface, Goodfellas, Untouchables}
▪Analogy Queries

SELECT analogy_3cosadd(

ôGodfatherô,ôFrancis_Ford_Coppola ô, m.title)

FROMmovies AS m

IncpeptionŸ Christopher Nolan

ÁkNN_In Queries*
SELECT DISTINCT title FROM movies

WHERE keyword = ANY(

SELECT term

FROM kNN_in ('historical fiction', 10,

ARRAY(SELECT keyword FROM movies))

Ÿ Movies for keywords: historical, fiction,
literary, fictionalized, novels
ÁGrouping*

SELECT term, groupterm

FROM grouping(SELECT title FROM movies),

'{Europe, America}ô)

Ÿ Melancholia | Europe
Ÿ Godfather | America

ÁHelper functions , e.g. to calculate
centroids, …

* Function calls simplified

8

Product Quantization

Idea
Reduce the computation time of the Euclidean square
distance through an approximation by a sum of
precomputed distances
Ÿ compact representation of vectors in index structure
Ÿ low computation time for distances

Preprocessing
Split vectors in ά subvectors
Ÿ apply k-means on subvectors to obtain k centroids for
every interval Ÿ quantizer ήȟȣȟή

Product-Quantization
1. Split vector in subvectors
2. Apply quantizers

Ÿ Represent Product-Quantization as sequence
3. approximate squared distances by sums of

precomputed squared distances Äό ●ȟή ό ◐

ό ◐ȟȣȟό ◐

Quantizer: assigns sub vector
to on of the centroid of ὅ

Approximated
distance :

ήḊᴙ ᴼ ╬ȟȣȟ╬

Product quantization:

Query vector

Splitting into άsubvectors
of ◐withὨdimensions

Vector from index

Ÿ Representation
as sequence

9

Product Quantization - Search

Index creation
▪Use k-means to calculate centroids for

quantizer ήȟȣȟή and store them in
a relation called “codebook”

▪Calculate sequences for every vector and store them
in a quantization table together with the
corresponding token

Search
▪Split query ὼvector into subvectors
▪Precompute square distances Äό ●ȟή ό ◐

by using the codebook relation and the subvectors of ὼ
▪Determine the approximated kNN using the

summation method to calculate distances for all
sequences in the lookup table.

Product quantization search

10

IVFADC

Idea :
Accelerate computation by providing a non-exhaustive
index with an inverted lookup
Preprocessing :
▪A coarse quantizer ήwhich quantize the whole

vectors (considering all dimensions) is applied
▪The residual vector ὶ◐ ◐ ή ◐ is calculated for

every vector
▪Product quantization is applied on the residual
▪A coarse lookup table is created which refers to lists

of sequences of product quantizations for residual
vectors of vectors with the same coarse
quantization

Calculation: Approximated distances can be calculated
by :

IVFADC search

11

Comparison: PQ-, IVFADC- and exact
Search

Intermediate fast: ≈ 9 times
faster
Exhaustive: Considers all vectors

Appropriated for :
•kNN-In queries
•3CosAdd analogy queries on a

specific output set
•Grouping queries
Inappropriate for :
•Computation of single

similarity values
•Pair direction queries

IVFADC Search PQ Search Exact computation

Very fast ≈ 300 times faster

Non -Exhaustive : Considers only
a subset of the vectors in the
index

Appropriated for :
•kNN queries
•3CosAdd analogy queries
ÍÁØÃÏÓὺ ὺ ὺ ȟȩ

Inappropriate for :
•Computation of single

similarity values
•Search queries with specific

output set

slow (but no preprocessing)

Separate calculation of all
similarity values (exact)

Appropriated for :
•Single similarity calculations
•Pair direction queries
•Search queries on a specific

output set

Inappropriate for :
•Search queries on huge

datasets

12

Post verification

Method
▪Re-ranking of aNN results by exact kNN search
▪Improve quality of results by retrieving more results

f > k of nearest neighbors in the first run
Ÿ Select best results with exact kNN Search

▪Precision could be improved a lot
Ÿ Especially useful for analogy queries

SELECT ANN.word

FROMk_nearest_neighbour_ivfadc (ôGodfatherô, 500)AS ANN

ORDER BY cosine_similarity (ôGodfatherô, ANN.word) DESC

FETCH FIRST 3 ROWS ONLY

Post verification process

aNN Search ○ȟὪ)
○: Anfragevektor

Ὢ: Postverifikation-
parameter

Ὧ: Anzahl
gewünschter
Ergebnisse

kNN Search(○ȟὯ, ANN)

13

Range Queries

Problem Setting
▪ Many SQL queries trigger a lot of aNN queries at one time
▪ Retrieving index data from database with independend queries needs a lot of time
▪ Retrieval of the same index data (e.g. codebook) multiple times

Range Query Approach
▪ Reduce retrieval time for aNN queries with batch-wise execution of queries
▪ UDF for range queries:

SELECT word

FROM k_nearest_neighbour_ivfadc_batch (ARRAY(SELECT title FROM movies), 3) ;

14

Range Queries

Algorithm
1. Determine coarse quantizations for query

vectors and differentz vectors (residual
vectors)

2. Create lookup:
coarse quantizations -> query vector

3. Precalculate quadratic distances of
subvectors

4. Retrieve IVFADC index entries
(CoarseID, PQ-Sequenz von Residuum)

5. Iterative Processing of index entries:
1. Retrieve residual vectors of query vectors with

the same coarse id via lookup
2. Caluclate approximated distances between

residual vectors
3. Update aNN for query vector

IVFADC batch search

15

Evaluation

Evaluation Setup
▪Search for 5 nearest neighbors

- Calculation of response time and precision
- Measurement for 100 Queries
Ÿ Determine average values

▪Dataset:
- 3 million vectors
- Dimensionality: 300

▪Index parameter:
- Length of PQ-sequences ά ρς

- Number of centroids for ήȣή Ḋρπςτ

- Number of centroids for ή Ḋρπππ

- Results for post verification Ὢ Ḋρπππ

- Size of batches Ḋρππ

Index Response
time

Precision

Exact search 8.79s 1.0

PQ search 1.06s 0.38

IVFADC 0.03s 0.35

PQ search
(postverif.)

1.29s 0.87

IVFADC (postverif.) 0.26s 0.65

IVFADC (batch wise) 0.01s 0.35
Time and precision measurements

Current and Further Research

17

System Performance

Word2Bits
Source: Lam, M. (2018). Word2Bits - Quantized Word Vectors, 1–9. Retrieved
from http://arxiv.org/abs/1803.05651
▪Quantization of coordinate values in the training

algorithm
▪Allows compressed representation
▪Act as a regularizer
▪Study work: Lukas Stracke

Research Idea
▪Combine Word2Bits Approach with PQ- and

IVFADC-search methods
▪Finite number of possible centroids

Ÿ Allows fast exact search

18

System Performance

LSH (Locality Sensitive Hashing)
▪Hash functions mapping vectors which are nearby with

high probability to the same bit sequence
▪Index is obtained by applying multiple such locality

sensitive hash functions on the vectors Ÿ Create lookup:
hash value Ÿ vector

▪Hash functions can be applied to the query vector Ÿ
lookup vectors with same or similar hash values

Research Idea
▪Integration in relational database system
▪Comparison with current aNN search methods
▪Realization in bachelor theses: Carl Naumann

ὬḊᴙ ᴼ πȟρ

ὒὛὌ○ Ὤ ○ȟȣȟὬ○

19

Demonstrator

FREDDY Demo
▪Web application as an interface for the WE-DBS
Ÿ Currently only a command line interface

▪Interactive Visualization of the performance and
precision of the implemented search methods

▪Submission for the
CIKM 2018 (Deadline: 25.5.)
(Demonstrator + Demo-Paper)

▪Realization in Bachelor Theses:
Zdravko Yanakiev

http://141.76.47.127:3000/

http://141.76.47.127:3000/

20

Context Advisor and Preprocessing

Problem Setting
▪Word vectors may refer to different entities as the

tokens in the database
(e.g. apple: fruit vs. Apple Inc.)

Ÿ Analyze context of the word vectors and
database entities to make it possible to combine
both information sources

Challenges
(1) Extract structured Information of text values in

the DBS
- Database does not contain explicit knowledge about

the semantic of textual values
Ÿ Obtain semantic knowledge by observing the
relations

- Column describes a context for the text values in it
Ÿ Could be used to cope with polysemy of words

- Different text values can refer to the same instance (e.g.
aliases, nicknames, etc.)

Alignment and
Correlation Analysis

Relations of
text values

Word embedding
dataset

21

Context Advisor and Preprocessing

Challenges
(2) Determine if entities are represented in the word

embedding dataset
- Observe how far structured knowledge is encoded in the word

vectors
- Do relations encoded in the word vectors contradict with relations

in the database?
(3) Map Text Values to Word Vectors

- Align structured knowledge in the database with the word vectors
- Decide which word embedding fits to the text value
- System can contain multiple word embedding datasets
Ÿ Decide which word embedding dataset fits best

(4) Result Set Interpretation for WE-DBS-Queries
- kNN is not always meaningful (too small similarity values have low

validity or at least could hardly be interpreted)
Ÿ Quantify certainty of the truth of results

(5) Word Embedding Imputation: Integrate Missing Entities
in Word Embedding Dataset

- Vectorization of structured knowledge and align to word vectors

Alignment and
Correlation Analysis

Relations of
text values

Word embedding
dataset

22

Related Work

Sense2Vec: NER tagging before training
Trask, A., Michalak, P., & Liu, J. (2015). sense2vec - A Fast and Accurate
Method for Word Sense Disambiguation In Neural Word Embeddings, 1–
9. Retrieved from http://arxiv.org/abs/1511.06388

▪Named Entity Recognition as preprocessing
Ÿ Classes are annotated to named entities

▪Instead of vector set for words vector set for
senses

Word2Vec

Apple has presented a new
product in Chicago …

NER Tool

Text corpora in natural language

Apple_ORG has presented a new
product in Chicago_GPE …

Text corpora where NE are tagged

Apple_ORG: [0.343, -0.212, …]
Apple_NOUN: [0.343, -0.212, …]
…

http://arxiv.org/abs/1511.06388

23

Related Work

Context-Specific Multi-Prototype Word Embeddings
Zheng, X., Feng, J., Chen, Y., Peng, H., & Zhang, W. (n.d.). Learning Context-Specific
Word/Character Embeddings, 3393–3399.

▪Assumption: Different word senses occur in different
contexts

▪Idea: Convolutional Layer represents context
Ÿ Trained to predict word sense from context
representation

▪Second Step: If context vector is dissimilar to sense vector
Ÿ Create additional sense vectors for the respective
words
Ÿ Retrain the model with multiple sense vectors per token

Source: Zheng, X., Feng, J., Chen, Y., Peng, H., & Zhang, W.
(n.d.). Learning Context-Specific Word/Character
Embeddings, 3393–3399.

24

Related Work

Densifer: Focus information for specific
properties (sentiment, frequency,
concreteness) in ultradense subspaces

Rothe, S., Ebert, S., & Schütze, H. (2016). Ultradense Word
Embeddings by Orthogonal Transformation. Retrieved from
http://arxiv.org/abs/1602.07572

▪Training of Orthogonal Matrix ὗᶰᴙ
for projecting Word Embedding Ὡ ᶰᴙ
in a vector space where specific
dimensions (ultradense subspaces)
represent specific properties of the token
(e.g. sentiment, concreteness)

▪Subspace ό ᶰᴙ
ᶻcan be obtained by

multiplication with an Identity Matrix ὖᶰ
ᴙ

ᶻ specific for the property:

ό ὖὗὩ

Source: Rothe, S., Ebert, S., & Schütze, H. (2016). Ultradense Word
Embeddings by Orthogonal Transformation. Retrieved from
http://arxiv.org/abs/1602.07572

http://arxiv.org/abs/1602.07572
http://arxiv.org/abs/1602.07572

25

Related Work

Translation Matrix
Mikolov, T., View, M., Le, Q. V, View, M., Sutskever, I., & View, M.
(n.d.). Exploiting Similarities among Languages for Machine
Translation.

▪Training of Translation Matrixὡ for
Transformation of Embeddings from one
vector space to another

▪Training Data: small dictionary of token pairs
ὼȟᾀ

▪Training with Stochastical Gradient Decent Source: Mikolov, Tomas, Quoc V. Le, and Ilya Sutskever.
"Exploiting similarities among languages for machine translation.“
arXiv preprint arXiv:1309.4168 (2013).

26

Related Work

Joint Embeddings (for Knowledge Graph Completion)
Wang, Z., Zhang, J., Feng, J., & Chen, Z. (2014). Knowledge Graph and Text Jointly Embedding. Emnlp
▪Joint Model - Embeddings for nodes in knowledge graphs and tokens in texts
▪Knowledge Graph Nodes:

- Minimze:ȿ▐ ► ◄ȿfor a fact ▐ȟ►ȟ◄ in the Graph (Edge)
▪Text Model:

- Similar to Word2Vec SkipGram Model (Trained to predict probability of co-occurrence)
▪3 Likelihood consists of three terms:

- Knowledge Model ὒ
- Text Model ὒ
- Alignment ὒ : Nodes with the same label as named entities should have similar vectors as the according

tokens
▪Training: Maximization of ὒ ὒ ὒ

27

Related Work

Uncertainty of word vector similarity
Rekabsaz, N., Lupu, M., & Hanbury, A. (2016). Uncertainty in
Neural Network Word Embedding: Exploration of Threshold for
Similarity. https://doi.org/10.1007/978-3-319-56608-5_31
▪Measured the distribution of Similarity values
▪Determine uncertainty ′of similarity values

by training a model two times on the same
text corpora with different model
initialization

Ÿ Low similarity values are more
uncertain

Ÿ For specific tasks usability of word vectors
could be improved by thresholds for
similarity values

Source: Rekabsaz, N., Lupu, M., & Hanbury, A. (2016). Uncertainty
in Neural Network Word Embedding: Exploration of Threshold for
Similarity. https://doi.org/10.1007/978-3-319-56608-5_31

28

Complexity of the WE-Queries

Multiple Datasets:
▪Word embedding operations can be executed on different WE datasets
▪Word embedding datasets could be combined
▪(Not all entities in a column have an corresponding instance in the word embedding

dataset)

Multiple Parameters:
▪Different queries have different demands in terms of

- Precision of Search Operations itself
- Execution Time of the Operations
- Certainty of similarity values

Index structures
▪Multiple index structures for one dataset (different types and different parameters)
▪Change over time (It is possible to add entities during runtime)

29

Complexity of the WE-Queries

Deal with the Complexity
▪Huge number of User Defined Functions:

At the moment 86 additional UDFs (, and there will be more …)
But: Only 5 basic operations

▪At the moment two options:
1) Cope with complexity – Operations with a lot of parameters
2) Transfer configuration to separate functions – define configuration global

Problems:
•Non-transparent: same query returns different results (with different configuration)
• Inflexible: multiple operations in one query share the same configuration

▪Possible Solution:
- Objects storing for database entries how they could be examined by word embedding operations
- In specific contexts where an entity is used it might play different roles

